首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   6篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   12篇
  2011年   9篇
  2010年   3篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   12篇
  2004年   10篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有191条查询结果,搜索用时 144 毫秒
61.
62.

Introduction

A hallmark of systemic autoimmune diseases like systemic lupus erythematosus (SLE) is the increased expression of interferon (IFN) type I inducible genes, so-called IFN type I signature. Recently, T-helper 17 subset (Th17 cells), which produces IL-17A, IL-17F, IL-21, and IL-22, has been implicated in SLE. As CCR6 enriches for Th17 cells, we used this approach to investigate whether CCR6+ memory T-helper cells producing IL-17A, IL-17F, IL-21, and/or IL-22 are increased in SLE patients and whether this increase is related to the presence of IFN type I signature.

Methods

In total, 25 SLE patients and 15 healthy controls (HCs) were included. SLE patients were divided into IFN type I signature-positive (IFN+) (n = 16) and negative (IFN-) (n = 9) patients, as assessed by mRNA expression of IFN-inducible genes (IFIGs) in monocytes. Expression of IL-17A, IL-17F, IL-21, and IL-22 by CD4+CD45RO+CCR6+ T cells (CCR6+ cells) was measured with flow cytometry and compared between IFN+, IFN- patients and HCs.

Results

Increased percentages of IL-17A and IL-17A/IL-17F double-producing CCR6+ cells were observed in IFN+ patients compared with IFN- patients and HCs. IL-17A and IL-17F expression within CCR6+ cells correlated significantly with IFIG expression. In addition, we found significant correlation between B-cell activating factor of the tumor necrosis family (BAFF)–a factor strongly correlating with IFN type I - and IL-21 producing CCR6+ cells.

Conclusions

We show for the first time higher percentages of IL-17A and IL-17A/IL-17F double-producing CCR6+ memory T-helper cells in IFN+ SLE patients, supporting the hypothesis that IFN type I co-acts with Th17 cytokines in SLE pathogenesis.  相似文献   
63.
The most feared complication following intestinal resection is anastomotic leakage. In high risk areas (esophagus/rectum) where neoadjuvant chemoradiation is used, the incidence of anastomotic leaks remains unacceptably high (~10%) even when performed by specialist surgeons in high volume centers. The aims of this study were to test the hypothesis that anastomotic leakage develops when pathogens colonizing anastomotic sites become in vivo transformed to express a tissue destroying phenotype. We developed a novel model of anastomotic leak in which rats were exposed to pre-operative radiation as in cancer surgery, underwent distal colon resection and then were intestinally inoculated with Pseudomonas aeruginosa, a common colonizer of the radiated intestine. Results demonstrated that intestinal tissues exposed to preoperative radiation developed a significant incidence of anastomotic leak (>60%; p<0.01) when colonized by P. aeruginosa compared to radiated tissues alone (0%). Phenotype analysis comparing the original inoculating strain (MPAO1- termed P1) and the strain retrieved from leaking anastomotic tissues (termed P2) demonstrated that P2 was altered in pyocyanin production and displayed enhanced collagenase activity, high swarming motility, and a destructive phenotype against cultured intestinal epithelial cells (i.e. apoptosis, barrier function, cytolysis). Comparative genotype analysis between P1 and P2 revealed a single nucleotide polymorphism (SNP) mutation in the mexT gene that led to a stop codon resulting in a non-functional truncated protein. Replacement of the mutated mexT gene in P2 with mexT from the original parental strain P1 led to reversion of P2 to the P1 phenotype. No spontaneous transformation was detected during 20 passages in TSB media. Use of a novel virulence suppressing compound PEG/Pi prevented P. aeruginosa transformation to the tissue destructive phenotype and prevented anastomotic leak in rats. This work demonstrates that in vivo transformation of microbial pathogens to a tissue destroying phenotype may have important implications in the pathogenesis of anastomotic leak.  相似文献   
64.
Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml·kg(-1)·min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.  相似文献   
65.
66.
67.
68.
Using positron emission tomography (PET) and intravenously injected (13)N(2), we assessed the topographical distribution of pulmonary perfusion (Q) and ventilation (V) in six healthy, spontaneously breathing subjects in the supine and prone position. In this technique, the intrapulmonary distribution of (13)N(2), measured during a short apnea, is proportional to regional Q. After resumption of breathing, regional specific alveolar V (sVA, ventilation per unit of alveolar gas volume) can be calculated from the tracer washout rate. The PET scanner imaged 15 contiguous, 6-mm-thick, slices of lung. Vertical gradients of Q and sVA were computed by linear regression, and spatial heterogeneity was assessed from the squared coefficient of variation (CV(2)). Both CV and CV were corrected for the estimated contribution of random imaging noise. We found that 1) both Q and V had vertical gradients favoring dependent lung regions, 2) vertical gradients were similar in the supine and prone position and explained, on average, 24% of Q heterogeneity and 8% of V heterogeneity, 3) CV was similar in the supine and prone position, and 4) CV was lower in the prone position. We conclude that, in recumbent, spontaneously breathing humans, 1) vertical gradients favoring dependent lung regions explain a significant fraction of heterogeneity, especially of Q, and 2) although Q does not seem to be systematically more homogeneous in the prone position, differences in individual behaviors may make the prone position advantageous, in terms of V-to-Q matching, in selected subjects.  相似文献   
69.
Zhang, Xue-Qian, Yuk-Chow Ng, Timothy I. Musch, Russell L. Moore, R. Zelis, and Joseph Y. Cheung. Sprint training attenuates myocyte hypertrophy and improvesCa2+ homeostasis in postinfarctionmyocytes. J. Appl. Physiol. 84(2): 544-552, 1998.Myocytes isolated from rat hearts 3 wk aftermyocardial infarction (MI) had decreasedNa+/Ca2+exchange currents(INa/Ca; 3 Na+ out:1Ca2+ in) and sarcoplasmicreticulum (SR)-releasable Ca2+contents. These defects in Ca2+regulation may contribute to abnormal contractility in MI myocytes. Because exercise training elicits positive adaptations in cardiac contractile function and myocardialCa2+ regulation, thepresent study examined whether 6-8 wk ofhigh-intensity sprint training (HIST) would ameliorate some of thecellular maladaptations observed in post-MI rats with limited exerciseactivity (Sed). In MI rats, HIST did not affect citrate synthaseactivities of plantaris muscles but significantly increased thepercentage of cardiac -myosin heavy chain (MHC) isoforms (57.2 ± 1.9 vs. 49.3 ± 3.5 in MI-HIST vs. MI-Sed, respectively;P  0.05). At the single myocytelevel, HIST attenuated cellular hypertrophy observed post-MI, asevidenced by reductions in cell lengths (112 ± 4 vs. 130 ± 5 µm in MI-HIST vs. MI-Sed, respectively;P  0.005) and cell capacitances (212 ± 8 vs. 242 ± 9 pF in MI-HIST vs. MI-Sed, respectively; P  0.015). ReverseINa/Ca wassignificantly lower (P  0.0001) inmyocytes from MI-Sed rats compared with those from rats that were shamoperated and sedentary. HIST significantly increased reverseINa/Ca(P  0.05) without affecting theamount ofNa+/Ca2+exchangers (detected by immunoblotting) in MI myocytes. SR-releasable Ca2+ content, as estimated byintegrating forwardINa/Ca duringcaffeine-induced SR Ca2+ release,was also significantly increased (P  0.02) by HIST in MI myocytes. We conclude that the enhanced cardiacoutput and stroke volume in post-MI rats subjected to HIST aremediated, at least in part, by reversal of cellular maladaptationspost-MI.

  相似文献   
70.
In cultures of xenopus myotomal muscle cells and spinal cord (SC) some of the nerve-muscle contacts exhibit a high density of acetylcholine receptors (AchRs [Anderson et al., 1977, J. Physiol. (Lond.). 268:731- 756,757-773]) and synaptic ultrastructure (Weldon and Cohen, 1979, J. Neurocytol. 8:239-259). We have examined whether similarly specialized contacts are established when the muscle cells are cultured with explants of xenopus dorsal root ganglia (DRG) or sympathetic ganglia (SG). The outgrowth from the ganglionic explants contained neuronal and non- neuronal cell processes. Although both types of processes approached within 100 A of muscle cells, synaptic ultrastructure was rarely observed at these contacts. Because patches of postsynaptic ultrastructure also develop on noncontacted muscle cells, the very few examples of contacts with such specializations probably occurred by chance. AChRs were stained with fluroscent α-bungarotoxin. More than 70 percent of the SC-contacted muscle cells exhibited a high receptor density along the path of contact. The corresponding values for DRG- and SG- contacted muscle cells were 10 and 6 percent. Similar values were obtained when the ganlionic and SC explants were cultured together in the same chamber. The few examples of high receptor density at ganglionic-muscle contacts resembled the characteristic receptor patches of noncontacted muscle cells rather than the narrow bands of high receptor density seen at SC-muscle contacts. In addition, more than 90 percent of these ganglionic- contacted muscle cells had receptor patches elsewhere, compared to less than 40 percent for the SC-contacted muscle cells. These findings indicate that the SC neurites possess a specific property which is important for the establishment of synaptically specialized contacts with muscle and that this property is lacking in the DRG and SG neurites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号